مجمو عة)	سكثن ()	اسم الطالب:

Question (1)

Complete the following statement

(a) One Joule $(1.00 \mathrm{~J})$ is equivalent to \qquad calories.
(b) The internal energy of a system can be increased by \qquad
(c) \qquad is a state function, that is, a change in this quantity depends only on the initial and final states of the system being discussed.
(d) The internal energy of a system is the sum of all \qquad and \qquad energies of its component parts
(e) A $\Delta \mathrm{H}$ corresponds to a process.
(f) The slandered enthalpy of a reaction is defined as \qquad

Question (2)

Calculate the amount of heat q for an endothermic process in which the system receives 12 J of work from its surrounding and the change of internal energy is 77 J .

When 5.8 g acetone $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{(\ell)}$ is burned at $25^{\circ} \mathrm{C}$ in a constant pressure system with an excess oxygen carbon dioxide and liquid water are formed and 42.739 kcal of heat is given off
(i) Formulate this reaction as thermochemical equation.
(ii) Is the reaction exothermic or endothermic?
(iii) Calculate the internal energy change ($\Delta \mathrm{E}$) for this reaction.

Calculate $\Delta \mathrm{H}$ for the reaction of formation of the toxic gas carbon monoxide from the elements

$$
\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})} \quad \Delta H=?
$$

Given that:

$$
\begin{array}{lrl}
\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2(\mathrm{~g})} & \Delta H_{1} & =-393.5 \mathrm{~kJ} \\
\mathrm{CO}_{(\mathrm{g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} & \rightarrow \mathrm{CO}_{2(\mathrm{~g})} & \Delta H_{2}
\end{array}
$$

