

اسم الطالب<u>:</u>

Question (1)

(6 marks)

Complete the following statement

- (a) One Joule (1.00 J) is equivalent tocalories.
- (b) The internal energy of a system can be increased by
- (c) is a state function, that is, a change in this quantity depends only

on the initial and final states of the system being discussed.

(d) The internal energy of a system is the sum of alland

energies of its component parts

- (e) A..... ΔH corresponds to a..... process.
- (f) The slandered enthalpy of a reaction is defined as

.....

Question (2)

(2 marks)

Calculate the amount of heat q for an endothermic process in which the system receives 12J of work from its surrounding and the change of internal energy is 77J.

Question (3)

When 5.8 g acetone $C_3H_6O_{(\ell)}$ is burned at 25°C in a constant pressure system with an excess

oxygen carbon dioxide and liquid water are formed and 42.739 kcal of heat is given off

- (i) Formulate this reaction as thermochemical equation.
- (ii) Is the reaction exothermic or endothermic?
- (iii) Calculate the internal energy change (ΔE) for this reaction.

Question (4)

(3 marks)

Calculate ΔH for the reaction of formation of the toxic gas carbon monoxide from the elements $C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)} \qquad \Delta H = ?$

Given that:

$$C_{(s)}+O_2(g) \rightarrow CO_{2(g)}$$
 $\Delta H_1 = -393.5 \text{ kJ}$ (1)
 $CO_{(g)}+\frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H_2 = -283 \text{ kJ}$ (2)